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SUMMARY

A series of simple theoretical models are discussed, representing
the essential features of flexible aircraft both of the classical and
integrated varieties, in trimmed level flight. Assuming linear aero-
dynamics it is shown that the maximum speed for trimmed flight for the
classical aircraft is determined primarily by the tail-plane flexibility.
For the integrated aircraft this maximum speed occurs when both the
overall aeroelastic distortion and the control forces become very large,
the effectiveness of the control to trim is related to the similarity
of the weight and aerodynamic lifting distributions. Detailed
calculations on trimmed plate wings of varying plan form further
illustrate these general points.

The aeroelastic effects of these trimmed plate wings in level flight
are also investigated assuming non-linear aerodynamics. It is shown
that in general there are two positions of equilibrium of the aircraft
at each speed although it is possible that at high speeds both these

positions of equilibrium are imaginary. The stability of these positions
of equilibrium are not discussed in this paper.
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SOME STATIC AEROELASTIC CONSIDERATIONS OF
SLENDER AIRCRAFT

G.J. Hancock*

1. INTRODUCTION

The techniques for the calculation of aeroelastic effects have been formulated and
perfected during the evolution of the conventional, or classical aircraft, comprised

of distinct wings, fuselage and tail and acted on by aerodynamic forces which depend
linearly on incidence. We are now in a state of transition from this conventional
subsonic aircraft to the supersonic aircraft of the future. The latter is expected
to differ from the former in two important respects. First, the supersonic con-
figuration will be integrated into a single unit combining the roles of wings,

fuselage and tail. Second, the current supersonic aerodynamic design philosophy of
incorporating flow separations and the formation of leading-edge vortices as essential
parts of the flow field implies that the aerodynamic forces will be non linear
functions of incidence. Therefore, from an aeroelastic point of view two important

questions may be posed. First, which' of our aeroelastic concepts based on background
of knowledge built up with the experience on conventional aircraft, may be safely

extrapolated to the integrated aircraft, and which of our concepts have to be thought
about again and re-defined? Secondly, what are the additional aeroelastic effects
due to the presence of the non linear aerodynamic forces? In this Report we only
begin to answer these questions by consideration of some simple static aeroelastic
effects.

As an indication of the reality and depth of these questions, a difficulty arises
straight away over definitions. In the past, static aeroelasticity has been defined
in term of structural and aerodynamic forces only. This definition tends to lose
its meaning when applied to the integrated configuration, so the following definitions
are suggested. Static aeroelasticity is the domain of aeroelasticity in which all
the forces (inertial, structural and aerodynamic) are present but are independent of
time. Dynamic aeroelasticity is the domain of aeroelasticity in which all the forces
(Inertial, structtral and aerodynamic) are present but are dependent on time. So
static aeroelastlcity refers to the equilibrium problem of a steady manoeuvre, dynamic
aeroelasticity refer. to stability end response problem. Static stability is a
limiting case of dynamic stability and is not included under the present definition
of static aeroelasticity.

In this Report we consider only static aeroelasticity, that is, the equilibrium
problem, involving a steady controlled manoeuvre. Since one manoeuvre is as re-
presentative as any other we shall limit our discussion to the trimmed level flight
condition. Since we are interested in relating the aeroelastic effects on conventional
aircraft to those on the slender integrated aircraft we shall first review the basic
aeroelastic effects on conventional aircraft by reference to som extremely simple
models which idealise the various flexibilities of this type of aircraft. Then wek shall look at som overall effects of the integrated configurations, again by reference

Qsem Nary Collep, Mile d oad, London, 5.1, England
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to simple models and in this case we shall include a consideration of the non linear
aerodynamics.

2. NODEL 1. REPRESENTING THE CLASSICAL
AIRCRAFT WITH A FLEXIBLE WING

An attempt is made in this model to illustrate some of the main ideas regarding
wing distortion on a conventional aircraft consisting of separate wings, fuselage and
tail unit. It is assumed that the wings, fuselage and tail are all rigid, but that
the mounting of the main wings to the fuselage is elastic, allowing the wings to have
the single degree of freedom of twist only. The torsional stiffness of the wing (of
area Sw ) relative to the fuselage is denoted by mg (lb ft/rad) . The incidence of
the fuselage is denoted by a. The angular distortion of the wing relative to the
fuselage is denoted by 8 , assuming that 8 = 0 corresponds to the unloaded
equilibrium attitude. This configuration is shown in Figure 1,

For the purposes of this model it is assumed that Co0  is zero. This assmption
will not invalidate the qualitative conclusions derived from this model. Therefore
in steady trimed level flight

Wing Lift = Lw = V +I) pV2Sedao (a )

Tail Lift = LT = W -) (2)

Torsional Distortion = = Lwec
me

Puselage Incidence = a = Lw 1 - (4)
ipirswao [me

(The notation is given in Pig.l). Prom the expression for the tail lift LT the
elevator angle to trim can be calculated. Thus in this model the angular distortion
6 is independent of speed but the fuselage incidence a decreases with speed.

Thus from a trim point of view wing distortion Is not a critical parameter.
This Is true even when more sophisticated models, representing wing flexibilitles in
a more practical maner, are assumed.

3. MODEL X. REPRESENTING TIE CLASSICAL
AIRCRAFT WITS A FLEXIBLE FUSELAGE

In this model we look at the flexibility of the fuselage. Again to illustrate the
main points we consider an idealied version of the problem. The fuselage Is

L&



3

represented by an elastic beam of uniform cross section and uniform weight distribution

(o, lb/ft) . The lifts on the rigid wing and tail (Lw and LT) together with the wing

and tail weights (Ww and Wt) act at the ends of the fuselage. We are neglecting the

part of the fuselage ahead of the wings and aft of the tail. The wing section is

assumed to be symmetrical (i.e. angle of zero lift is zero) with its centre line

parallel to the local fuselage centre line, i.e. the wing incidence is the same as

the incidence of the front of the fuselage. This is shown in Figure 2.

The steady trimmed level flight condition gives

Lw Ww+ %01 JpVSw aoax_.0  (5)

LT wT +  %pv 
2 ST [al ax - - ) +a27] (6)

The fuselage distortion f(x) may be found by solving the differential equation

for the loaded beam with the appropriate end conditions. The main results however may

be deduced directly from physical conditions. These are (I) since LW is constant

then (a)1.0  will be the same whether the beam fuselage is rigid or flexible, it is

independent of the beam flexibility; (ii) since the loading in the trimmed state is

independent of speed the fuselage distortion, measured relative to the axis (a),-0

is independent of speed. Thus from a trim point of view fuselage flexibility is not

a critical parameter.

4. NOBEL 3. REPRESNTING THE CLASSICAL

AIRCRAFT WITH A FLEXIBLE TAIL

To complete our analysis of the conventional configuration we should discuss the

distortion characteristics of a flexible tail plane. For this model we take a rigid

wing (symmetrical section, zero angle relative to fuselage), rigid fuselage and a.

rigid tail plane with a flexible mounting of torsional stiffness Me. (lb ft/rad)

between the tail plane and fuselage. This Is shown In Figure 3.

In steady trimmed level flight

= IT = %PV 2 S~a~a (7)

L W IV' + IT

L = V tut= upVl OT (a 1 [al+ e) +o at t (8)
+

7he structural equilibrium of the tail is given by

TLTso UT me(9)
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where M is the moment about the tail aerodynamic centre (+ nose down) due to the

elevator deflection 77 defined by

MT = %pV2STCTm7M (10)

The effect of NT  on the overall equilibrium conditions is usually neglected. The
substitution of equations (9) and (10) into Equation (8) gives the elevator angle to
trim.

7 L?= - pV2 STa a (1 - BE/Bo.)] [Me - X pV STCTalm/a 2]
%pV2 S ar 2  [Mg - _pV c ST C al m/a2]

where

-ea 2  LT

m LT - pV2 STal (l - Be/'aa)

The elevator angle to trim tends to infinity as V - V. where

Vc = NoPS CTalm/a J (12)

The speed Vc  is therefore the maximum speed theoretically possible for trimmed level

flight. Alternatively. if the elevator effectiveness for trim is defined as the

elevator required to trim (i.e. Equation 11) divided by the elevator required to trim

with a completely rigid tail (i.e. Equation 11 with me infinite), then Vc  is the

speed at which there is no control effectiveness to trim. This is sometimes referred
to as the 'elevator reversal speed' but this definition is not really admissible since
the aircraft cannot attain the speed at which it cannot be controlled, and so the

concept of reversal of control, which implies flight through the critical region,

is not relevant.

Note that when X = I there is no loss of control effectiveness except at the
critical speed V. . Therefore from a trim point of view tail flexibility is the

critical parameter which determines the overall aeroelastic limiting conditions for

this controlled condition of flight.

5. MODEL 4. REPIESENTING AN INTEIIRATED AIRCRAFT

We now consider an idealized integrated system in which the wing, fuselage and
tail are combined together, as they wonld be for a slender configuration with the

aerodynamic loading distributed over the whole of the length. We take as our model
a simple beam of uniform cross-section (uniform bending stiffness distribution I,
uniform weight distribution o, lb/ft, total length I ) under a simplified linear
aerodynamic load distribution which is assumed to be KpV 2 (x) , where a(x) is
the local incidence and K Is taken to be constant. To simulate the force on the
elevator control, a force P In applied at the trailing edge of the system, ensuring
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that the overall equilibrium conditions (Lift = Weight, Moment = 0) are satisfied.

This system is shown in Figure 4.

In steady trimmed flight the distortion function y(x) satisfies the differential

equat ion

IyIv = -0- KpV2 y' (13)

The boundary conditions are

y y"fit.o0  = y11  0 (14)

Y'[ =I - - (15)

It can be shown that any solution of Equation (13) which satisfies the boundary
conditions (14) and (15) automatically satisfies the overall equilibrium conditions.

The solution of Equation (13) is

-y = (x) - + Ae) x + •M x  co ! x + C sin(16)
KPV 2  \B2 22

where

KpV2  (17)

and A . B and C are arbitrary constants. The substitution of Equation (16) into
the three boundary conditions (14) gives three simultaneous equations for A , B and
C (the coefficients of which depend on X ). Thus the general solution is

A = B = C = 0

except at a critical velocity Vc , corresponding to the value of X when the
determinant of the simultaneous equations is zero. At this speed A , B and C are
indeterminate, although B and C can be found in terms of A

Equation (15) gives the control force P once the distortion is calculated. Thus
in general P is zero except at V = V where P depends on the coefficient A
(assuming that B and C have been calculated in term of A ).

Therefore, for this model in the trimmed state there is no distortion until a
critical speed is reached when a distortion can exist, depending on the size of an
arbitrary control force P . The absence of distortion for speeds below V0  is
explained physically in the present model by the fact that the lift distribution
exactly balances the weight distribution. In order to deduce further information
from the model it is necessary to alter this balance of- -erodyamic amid weight
loadings. This my be done by modifying the uniform weight distribution in this model

I
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(as shown in Pig.4) to an asymmetric weight distribution. If It is now assumed that
the weight distribution is taken to be

a = 0(2-) (18)

then the distortion function y(x) satisfies the differential equation

Elyiv = "rO2 " - KpV2Y, (19)

The boundary conditions are the same as before, i.e. Equations (14) and (15). The
solution of Equation (19) is

o a(x) = (2 -x/l) + Ae3x + e-%)(B cos - x + Csin - (20).y ~ )- K/pV 2  22

where k is the same as before (i.e. Equation 17). The substitution of Equation (20)
into the boundary conditions (14) again gives three simultaneous equations for A ,
B and C which in this case gives finite non-zero values for these coefficients for
each value of speed (or X ). The control force P can then be determined by sub-
stituting these known values of A , B and C into Equation (20) and then satisfying
condition (15). However, A . B and C increase as X approaches the critical
value at which the determinant of coefficients of A , B and C in the simultaneous
equation is zero. At the critical speed V. the distortions tend to infinity as the
control force P becomes very large.

It is noted that the critical speed is the same for both the weight distributions.
Therefore the critical speed is independent of the weight distribution but the control
effectiveness to trim below this critical maximum trim speed depends on the out-of-
balance of the aerodynamic lifting and weight distributions.

It could be argued that the aeroelastic effects associated with the tail flexibility
on conventional aircraft are similar to the overall effects of the whole of the
integrated slender aircraft.

6. THE SLENDER CONFIGURATIONS

The previous simplified models have given a qualitative Idea of the main aero-
elastic effects which we might expect to occur. At this stage therefore it is
necessary to extend these models, especially those representing the Integrated
configurations, to incorporate the particular features of the slender aircraft, both
structurally and aerodynamically. The slender configuration is shown In Figure 5.
together with the associated notation.

It is assumed that this aircraft will bend as a beam. For a given structure the
bending stiffness distribution ZI(x) and the lengthwise weight distribution w(x)
are assumed to be known. The mn difficulty at this stage is the general lack of
knowledge of the aerodynamic loading on streamwise cambered slender wings. However.
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it is assumed in this Report that the loading distribution 1(x) Is given by the

equation

M p,,2 7s 2 (x)a(x) + 4a(x)x) d (21)

= dx [ Xx 5 1 x
for the. general shape wing (i.e. s(x) and incidence distribution a(x) ). It is

assumed here that a - 0 is the zero lift case. This is an intuitive approximation

based on the following observations:

(i) If the non-linear term are absent (i.e. if there are no separation and

associated vortices) then the loading is given by linearized slender-wing

theory which states that

1(x) = pV2 - [Ts'(x) a(x)]
dx

for general distributions s(x) and a(x)

(11) The only reliable formula incorporating the leading-edge vortices, based on
both theoretical and experimental grounds, is for plate (or symmetrical)

delta aserofoils. This formula is

(x -- , 2 [ a,-kx + 4kxalal]

where s(x) = kx and a(x) a a which is constant.

Squation (21) is correct for these two particular cases and It is hoped that Its

generalized form will give a useful loading formula which represents the essential

loading characteristics of deformed slender shapes.

The 'verall equilibrium conditions which must be satisfied in the trimed state

are

f [I(x) - w(x)J di + P = 0 
(22)

and j°[I(x) - w(x)] [x - cJ dx = 0 (28)

The differential equation for the deformed aircraft shape Ax) is

(U!.6-) = -p 'nsA'+ 6,,,l-,>

with the boundary oonditloms

&
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d (Ezh"Ix,.o o(
SIh'11 1 m 0  =d d 84 0 0 (25)

(rI")1 1 0  -P (26)

This Equation (24) nmy be regarded as a third-order equation for the incidence
distribution a(x) satisfying the three boundary equations (25). From this solution
the control force P for overall equilibrium is then calculated from Equation (26).
On integration, applying the appropriate boundary conditions Equation (24) becomes

sial(e) = -PY 202f 7Ts2(e)O.(Ll) + 4 c(e)Io.(,)I s(b) V (27)

+ C3 ff ff'w(j) df, 9

where = x/c

with the boundary condition

ElIa' = 0 (28)

Equation (27) is completely general, and it can be solved for any distribution
ZI . w( ) , s(f) etc. by a simple step by step procedure from =0 to I = 1

However, to llustrate the ain qualitative trends from this equation we shall
concentrate once again on some simple slender models. These are taken to be slender
flat plates, first a simple delta and the second a gothic outline. Although these
plates do not have the type of distributions of weight and stiffness which are
expected in a typical supersonic project they are. at least, Consistent In their
relationship between stiffness and weight and they will show the main aerolastic
trends of distortion in trimmed flight.

7. SLENDER DELTA PLATE WING

We now consider the simple case of a slender delta wing of constant thickness t
and specific weight o per net area (lb/ft2) trimmed for level flight by a control
force P at the trailing edge. In this case therefore

a(z) = Kx = Kof (29)

The substitution of the appropriate stiffness mad weight distributions Into the
differential quation (28) given



9

eat= -A 1 '2 + K d) +  3 (30)

where

A =61T(l l2 (V 2)K

A, = 6(1 V2 )

The boundary condition (28) is

a(1) = 0 (31)

We may consider this problem in two parts, namely with and without the non-linear
part of the aerodynamic loading, that is, considering the problem in the presence of,
and in the absence of, the leading edge vortices.

(i) Linear Aerodynamics

The differential equation in this case is

2£ AjIf3 (32)

ccL' = e" f adg + 3

and a(f) must satisfy the end condition given by Equation (31). The first obvious
solution which satisfies the boundary condition is that a is constant and is given
by

a _ A, (33)
A

This solution, however, is not unique. This is shown by obtaining the general series
solution of Equation (32), which is

C = C - ( A a - A , ) " - + ,- ,
0 0 1 P~ 3262 32.o2.921

Boundary condition (21) gives

(Aa-A)(' A 0+ 32-.9) 2 0 (34)

Therefore a Is constant, given by Equation (33). except at the critical speed
(or A ) when the second bracket in Equation (34) is zero, and at this speed ao is
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arbitrary. This implies that the control force P is zero except at the critical
speed where any control force P may be applied, keeping the plate in trim.

This problem is therefore equivalent to Model 4. since physically the weight and
aerodynamic lifting distributions again exactly balance. The critical speed from

Equation (34) is given by

A = 33 (35)

(ii) Non-Linear Aerodynamics

The differential equation in this case is the full Equation (30), together with
the boundary condition (31). Again in this case a trivial solution exists giving a

constant, where a is given by

( + 7TK -
(36)

Physically this is because the presence of the vortices, according to the present
aerodynamic assumption (i.e. Equation 21), do not alter the distribution of loading;
they only increase the intensity of loading. So the plate takes up a smaller angle
of incidence, without distortion. And again solution (36) is not unique. A series
expansion can be applied, assuming a > 0 for 0 4 f 4 1 , giving a solution of the

.following form

0 ao( 1 )-A]P(lA , o (37)

The boundary condition (31) gives the result that

[ o + L-0 A , PI (1, A,Al,a o) = 0 (38)

Thereforeat each speed, in addition to the solution (36). there is the possibility

of mother distortion shape If

p' (i. A. AI, axo) = 0 (39)

There seem to be at least one simple solution of Equation (39) so that in general at
each speed there appear to be two distinct positions of equilibrium. As the speed
increases these two distortion shapes merge together until a certain speed is reached
at which both distortion shapes coincide. Above this speed the two distortion shapes
diverge from each other. This speed at which the two shapes coincide might be
regarded as a critical speed, near which the aircraft would tend to jump from one
position of equilibrium to the other, assuming that both positions of equilibrium are
stable. It could be argued that, In the region of this critical speed, if one
position of equilibrium is stable and the two positions gradually coincide with
Increase of speed the other position of equilibrium Is stable. This question of
stability can ot be resolved at this stae and requires further Investigatio before
a definite conclusion m y be reached about the relationship of those positions of
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equilibrium. In this Report we have only established their existence. The critical
velocity of this plate, from Equation (38) comes out to be

A 19.1 (40)

It is interesting to note the low value of this speed compared to the critical speed
in the absence of the leading-edge vortices (Equation 35).

The equilibrium shapes at A = 16.5 and A = 22 are shown in Figure 6.

S. SLENDER GOTHIC PLATE WING

This gothic plate wing is shown in Figure 7. Again this problem was investigated
with and without the non-linear aerodynamic term; in this problem the step by step
numerical techniques, mentioned earlier, had to be applied. The results are
summarized below.

(i) Linear Aerodyncaic

The maximam trim speed in this case is given by

A - 44.5 (41)

The variation of the equilibrium shapes of the wing at values of below the critical,
together with the variation of control force, are shown in Figure 8.

(ii) Non-Linear Aerodynamics

It in found in this case that at low values of A two positions of equilibrium
are apparently possible. This is a similar result to the delta plate. At a critical
speed, given by

A = 21.6 (42)

both positions of equilibrium coincide to a single position. Above this critical
speed no poitions of equilibri a are apparently possible. Shapes of equilibrium are
shown in Figure 9.

9. CONCLUSIONS

The ain conclusions regarding the aeroelastic effects in trimmed level flight my
be summarized as follows:

(i) on a conventional aircraft it is primarily the tall flexibility which is
responsible for the loss of control effectiveness to trim resulting in a
maxmum trim speed.

(11) Tbe assumption of linear aserodynamics an an integrated aircraft results in
a low of comtrol effectivemess to trim with increasing speed, giving a
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maximum trim speed (i.e. zero control effectiveness) at which the dis-

tortion of the whole airframe is very large. This limiting or critical

speed in independent of the weight distribution, but the control effectiveness

effectiveness to trim depends on the out-of-balance of the aerodynamic and

weight distributions.

(iii) From the assumption of non-linear aerodynamics on an integrated aircraft it
appears that at low speeds two independent positions of equilibrium exist.

These two modes of distortion coincide at a certain critical speed. Above

this critical speed there my be either two positions of equilibrium or no

positions of equilibrium. The nature of this critical speed has not been

satisfactorily explained in this Report; this can only be done by reference

to the stability of the various modes of equilibrium. This investigation

is at present under consideration.

It is interesting to note that the critical speed with non-linear aerodynamics is

considerably less than the critical speed with linear aerodynamics. This may be

relevant to the current ideas on the performance of slender aircraft when the cruise

condition is designed to have little or no flow separation at the leading edges so

that the cruise is determined by linear aerodynamic considerations, whereas the off-

cruise condition will have to contend with the effect of leading-edge vortices, that

is the effects of non-linear aerodynamics.

Finally, this paper is an introductory attempt to understand some of the fundamental

principles of aeroelasticity relating to the integrated aircraft. The approach

advocated ,in this paper, of studying simple models, produces the general background

which is desirable before any detailed design work is entered into.
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DISCUSSION

G.H. Lee (U.K.): Mr. Hancock has shown that with linear aerodynamics a flat plate of
gothic planform can have, in general, two different equilibrium shapes, though at a
certain speed these two shapes are the same. However, with non-linear aerodynamics
no solution is possible at speeds beyond that for which the two shapes coincide;
he therefore calls this a critical speed.

Since the difference in these two cases is due to the incorporation of non-linear
terns, I should like to know if Mr. Hancock has any idea as to how sensitive this
speed Is to the type of non-linear terms incorporated. In other words, would you get
similar critical speeds with different but reasonable non-linear theories, or is the
critical speed going to be very sensitive to the type of theory used?

Reply by Author: Pirst, I must correct the misapprehension gained by Mr. Lee from
my lecture; with linear aerodynamics there is only one position of equilibrium at
each speed, it is only with non-linear aerodynamics that there arises the possibility
of more than one position of equilibrium. However, my paper is intended to be only a
qualitative introduction to the type of aeroelastic phenomena which may arise on
slender aircraft in the presence of non-linear aerodynamic forces; such critical
speeds will occur with other assumptions for the non-linear aerodynamic loading
although it is premature at this stage to give reliable quantitative assessments of
these critical speeds. It should be remembered that quantitative results depend not
only on a more reliable knowledge of the non-linear aerodynamics but also on more
realistic estimates of the structural and inertial loadings.

H.H.B.M. 7homs (U.K.): Regarding Mr. Lee's question to Dr. Hancock, the point to
note In that linear aerodynamics leads to the cruise as the critical condition
aeroelastically with the flight path plan proposed for such aircraft. The query
raised by the present paper is whether off-design condition at larger Incidence my
not be more critical because of non-linear aerodynamics. I am sure Dr. Hancock will
agree that his paper points to the existence of a possible problem rather than an
asessmmnt of the severity of the problem in an actual design.
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(United Kingdom) .. .. .Report 339

The Estimation of Oscillatory Wing and Control Derivatives, by
l.R.A.Acum and H.C.Oarner (United Kingdom) .. .. .. Report 340

Qrrent Progress in the Estimation of Stability Derivatives, by
L.V.Malthan and D Z.Hoak (United States) .. .. .. .. Report 341

Calculation of Non-Linear Aerodynmic Stability Derivatives of
Aeroplaes, by K.Oersten (Germany) .. ... .. Report 342
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Estimation of Rotary Stability Derivatives at Subsonic and Transonic
Speeds, by M.Tobak and H.C.Lessing (United States) Report 343

Calcul par Analogie Rhioilectrique des Dirivies Aerodynaiques d'une
Aile d'Envergure Finie, by M.Enselme and M.O.Aguesse (Prance) .. Report 344

A Method of Accurately Measuring Dynamic Stability Derivatives in
Transonic and Supersonic Wind Tunne'ls, by H.G.Wiley and A.L.Sraslow
(United States) .. .. .. .. . .. . .. .. Report 345

Mesure des Dirivies Airodynamiques en Soufflerie et en Vol, by
.Scherer and P.Mathe (Prance) .. .. .. .. Report 346

Static and Dynamic Stability of Blunt Bodies, by H.C.Dueose
(United States) .. .. .. .. .. .. .. .. Report 347

AEROELASTIC EFFECTS

Effects of Aeroelasticity on the Stability and Control Characteristics
of Airplanes, by H.L.Runyan, K.G.Pratt and P.V.Sennett (United States) Report 348

The Influence of Structural Elasticity on the Stability of Airplanes
and Multistage Missiles, by L.T.Prince (United States) .. .. Report 349

Discussion de deux Methodes d'Etude d'un Mouvement d'un Missile
Flexible, by .Bimut and C.Seatrix (Prance) .. .. .. .. Report 350

The Influence of Aeroelasticity on the Longitudinal Stability of a
Swept-Wing Subsonic Transport, by C.M.Kalkman (Netherlands) .. .. Report 351

Some Static Aeroelastic Considerations of Slender Aircraft, by
G.J.Hancock (aited Kingdom) .. .. .. .. .. .. .. Report 352

COUPLING PHENONENA

Piteh-Ya-Roll Coupling, by L.L.Cronvich and S.E.Amsler (United States) Report 253

Application du Calculateur Analogique & l'Etude du Coulage des
Nouvements Longitudineaux et Tronmuersawx d'un Aion, by P.C.Haus
(Selgium) .. e................ . port 54

Influence of Deflection of the Control Surfaces on the Free-Flisht
Behaviour of en Aeroplane: A Contribution to Non-Linear Stability
Theory, by X.Rafer (Germn) .. .. .. .. .. .. .. Report 3"

STABILITY AND CONTROL AT I011 LIFT

Low-Soeed Stalling 0'reteris ties, by J.C.Wiupmny (ited Kongdom) Report 35



Some Low-Speed Problems of High-Speed Aircraft, by A.Spence and
D.Lean (United Kingdom) R.. .. .. .. .. Report 357

Factors Limiting the Landing Approach Speed of an Airplane from
the Viewpoint of a Pilot, by R.C.Innis (United States) .. .. Report 358

Post-Stall Gyrations and Their Study on a Digital Coaputer, by
S.H.Scher (United States) .. .. .. Report 359

THE APPLICATION OF SERVO-MECHANISMS

The Place of Servo-Mechanisms in the Design of Aircraft with Good
Flight Caracteristics, by K.H.Doetsch (United Kingdom) .. Report 360

Effects of Servo-Mechanism Characteristics on Aircraft Stability
and Control, by F.A.Gaynor (United States) .. .. .. .. Report 361

Lee Cosandes de Vol Considiries comae Formant un Systime Asservi,
by J. Gr6mont (France) .. .. .. .. .. .. .. Report 362

Determination of Suitable Aircraft Response as Produced by Automatic
Control Mechanisms, by E.Mewes (Germany) . ... .. .. Report 363

An Approach to the Control of Statically Unstable Manned Flight
Vehicles, by M.Dublin (United States) .. ... .. ., .. Report 364

TIE USE OF SIMULATORS

The Use of Piloted Flight Simulators in General Research, by
G.A.Rathert, Jr.. B.Y.Creer and .Sadoff (United States) .. .. Report 365

Simulation in Modem Aero-Space Vehicle Design, by C.B.Westbrook
(United States) .. .. .. .. .. .. .. .. Report 366

Mathematical Models for Missiles, by W.S.Brown and D.I.Paddison
(United Kingdom) .. .. .. .. .. .. .. .. Report 367

In-Flight Simulation - Theory and Application, by LA.Kidd, (.Bull
and I.P.Harper. Jr. (United States) .. .. .. .. .. Report 368

DEVELOPMENT TECUNIQUBE

Application of Analytical Techniques to Flight Evaluations in
Critical Control Areas, by J.Weil (United States) .. .. .. Report 3689

Investigation on the Iaprowement of Longitudinal Stability of a Jet
Aircraft by the Use of a Pitch-Domper, by R.Mautino (Italy) .. Report 370



MPthodes UtilisJes pour la Mise au Point de IAvion Bre'guet 940 a
Ailes Soufflies, by G. de Richemont (Prance) Report 371

TURBULENCE AND RANDOM DISTURBANCES

Theory of the Flight of Airplanes in Isotropic Turbulence; Review
and Extension, by B.Etkin (Canada) Report 372

The Possible Effects of Atmospheric Turbulence on the Design of
Aircraft Control Systems, by J.K.Zbrozek (United Kingdom) .. Report 373

L'Optinisation Statistique du Guidage par Alignement d'wi Engin
Autopropulsh en Presence de Bruit, by P.Lepivre (Prance) .. Report 374
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